
100 years of thyroxine, what is the future?

Ahmed Alaa Abdul-Aziz

Lecturer of Endocrinology

ARE YOU SATISFIED WITH THE CURRENT MANAGEMENT OF HYPOTHYROIDISM?

هل أنت راض عن العلاج الحالى لقصور الغدة الدرقية؟

Radar plot showing patient-related outcome using ThyPRO, at baseline (red) and 6 months after starting LT4 autoimmune hypothyroidism (green), compared with normative data (yellow).

THYROID Volume 17, Number 7, 2007 © Mary Ann Liebert, Inc. DOI: 10.1089/thy.2007.0069

Which Domains of Thyroid-Related Quality of Life Are Most Relevant? Patients and Clinicians Provide Complementary Perspectives

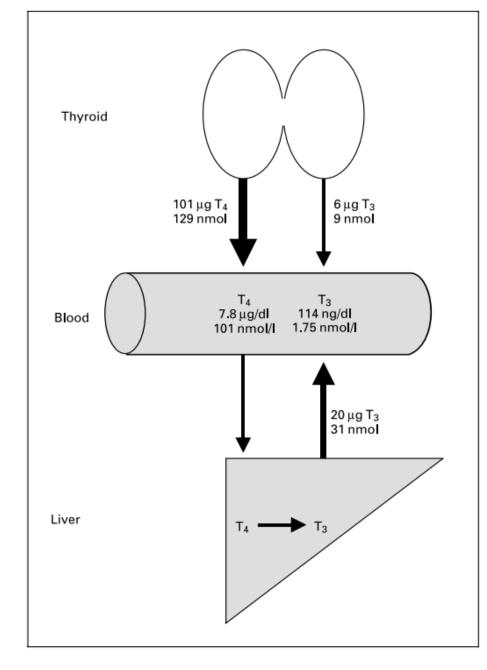
Torquil Watt,^{1,2} Laszlo Hegedüs,³ Åse Krogh Rasmussen,¹ Mogens Groenvold,² Steen Joop Bonnema,³ Jakob Bue Bjorner,⁴ and Ulla Feldt-Rasmussen¹

The relevance of 138 thyroid disease—related issues was rated during interviews. For each issue, three relevance measures were obtained: a diagnosis-specific patient rating, a diagnosis-specific expert rating, and a combined overall patient=expert rating. The 75 most relevant issues overall and the 15 most relevant issues in each patient category were selected.

Watt, T., et al. (2007). <u>Thyroid</u>[®] **17**(7): 647-654.

10%-15% of patients do not regain their wellbeing after adequate treatment with L-T4

Persistent symptoms → non-specific


5%

Perros, P., et al. (2023). "The enigma of persistent symptoms in hypothyroid patients treated with levothyroxine: A narrative review." <u>Clin Endocrinol (Oxf)</u> **98**(4): 461-468.

Hypothyroidism	ΡE	Hypothyroidism	ΡE	Hypothyroidism	Р	Е
Most relevant to patient	ts only	Most relevant to both patien	nts and experts	Most relevant to experi	ts oni	ly
Being slow* Bags under the eyes* Getting upset* Palpitations Globulus sensation Dyspnea Clearing throat often*	1 * 4 * 9 * 10 91 11 46 13 63 14 * 14 * 14 * 14 * 14 * 14 * 14 * 14	General fatigue Cold intolerance Physical fatigue Hypersomnia Weight increase Weight dissatisfaction Mental fatigue Constipation	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Impaired memory Limit daily activities Hoarseness Difficulty concentrating Depression Dry skin Attention problems	53 76 24 33 46	2 7 8 10 12 14 15

Watt, T., et al. (2007). "Which Domains of Thyroid-Related Quality of Life Are Most Relevant? Patients and Clinicians Provide Complementary Perspectives." Thyroid® 17(7): 647-654.

Historical Evolution of Treatment

Wiersinga, W. M. (2004). "Thyroid Hormone Replacement Therapy." <u>Hormone Research</u> **56**(Suppl. 1): 74-81.

Fig. 1. Daily production rates of thyroid hormone in healthy adults weighing 70 kg.

- 1884: Moritz Schiff demonstrated thyroidectomy effects in animals could be diminished by implanting additional thyroid tissue.
- Late 19th Century: Bettencourt and Serrano attempted human thyroid transplantation (unsuccessful due to patient death).

1891: George Murray successfully treated myxedema with sheep thyroid extract injections.

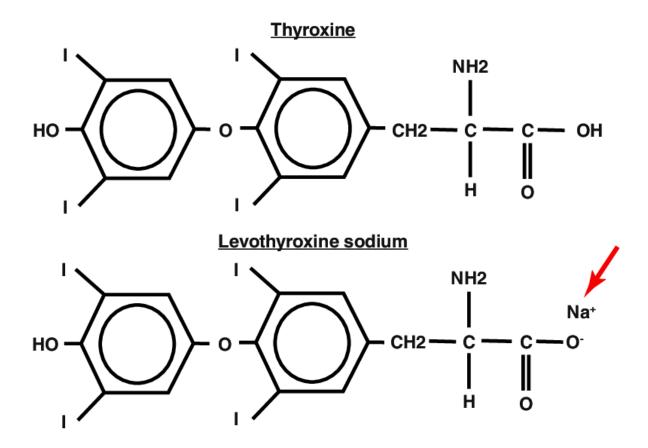
 In 1891, he introduced the successful treatment of myxedema, with <u>injections</u> of sheep thyroid extract, the first instance of hormone replacement therapy

Desiccated (Dry) thyroid extract

- In 1892, Fox, Mac Kenzie, and Vermeulen independently discovered that orally administered dried extracts of animal thyroid glands (from sheep, cattle, and pork) significantly improved hypothyroidism symptoms.
- The extract was prepared by cleaning, drying, and powdering the thyroid glands after removing fat and connective tissue.


How were hypothyroid patients monitored in the past on desiccated thyroid extracts

- 1. Symptom Observation
- 2. Physical Examination
- 3. Basal Metabolic Rate


Problems with desiccated thyroid extracts

- 1. Inconsistent ratio of T4 : T3 Levels
 - 2. Limited Customization
 - 3. Risk of Overmedication
 - 4. Variability in Potency

1926: Barger and Harington synthesized thyroxine.

In **1949** the sodium salt of LT4 was synthesized

1970s Shift to L-T4 Monotherapy:

Key Drivers:

- Discovery of peripheral T4-to-T3 conversion (proving T4 alone could restore T3 levels).
- Development of TSH radioimmunoassay, enabling precise dosing to normalize TSH.
- Resulted in reduced dosing (from 200–500 mcg/day to 100–150 mcg/day) and fewer adverse effects.

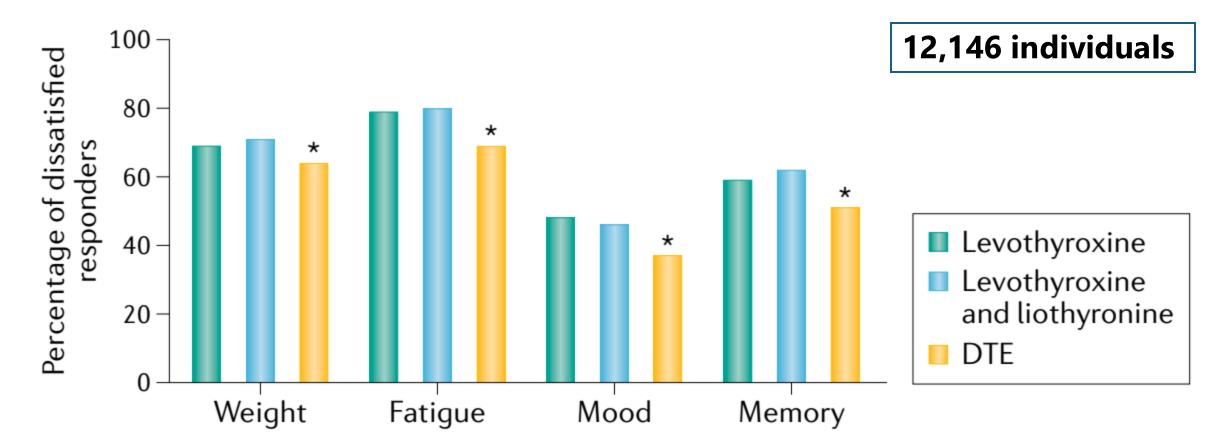
What do the guidelines say?

1a. Is levothyroxine monotherapy considered to be the standard of care for hypothyroidism?

RECOMMENDATION

Levothyroxine is recommended as the preparation of choice for the treatment of hypothyroidism due to its efficacy in resolving the symptoms of hypothyroidism, long-term experience of its benefits, favorable side effect profile, ease of administration, good intestinal absorption, long serum halflife, and low cost.

Strong recommendation. Moderate quality evidence.


Debates on Combination Therapy (T4 + T3)

 Mixed Evidence: Some trials show symptom improvement with desiccated thyroid or synthetic T4+T3, but results are inconsistent.

<u>Challenges:</u>

- Difficulty maintaining stable T3 levels due to its short half-life.
- Risk of thyrotoxicosis (e.g., palpitations, angina).

An Online Survey of Hypothyroid Patients Demonstrates Prominent Dissatisfaction

(Peterson, Cappola et al. 2018)

New Formulations to Improve Absorption:

Liquid L-T4 solutions:

- Bypass dissolution needs, faster absorption.
- Can be taken with food without affecting hormone levels, improving compliance.
- Effective for patients with gastric pH issues (e.g., post-bariatric surgery, H. pylori infection).

Virili C, Trimboli P, Centanni M. Novel thyroxine formulations: a further step toward precision medicine. Endocrine. 2019;66(1):87-94

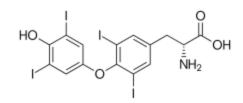
Softgel capsules:

- Protect L-T4 from pH variations and drug interactions.
- Early studies suggest efficacy in malabsorption scenarios, but more research needed

Virili C, Trimboli P, Centanni M. Novel thyroxine formulations: a further step toward precision medicine. Endocrine. 2019;66(1):87-94

Thyromimetics

What are thyromimetics?


Thyromimetics are compounds which <u>activate</u> the nuclear thyroid hormone receptor.

Chemical structure similar to T3 with <u>changes</u> specifically targeting the thyroid hormone receptor α or β .

Some have been modified to target the <u>liver</u> specifically.

Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol. 2024.

Dextro-Thyroxine

- Synthetic thyroid hormone used to lower cholesterol levels
- Discontinued due to cardiac side effects

- Potential benefits in metabolism and weight management.
- It has some direct thyroid hormone activity
- However, its use as a supplement is still under investigation.
- More studies are needed to fully understand its safety and efficacy

 Table 1. Summary of synthetic thyromimetics.

Compounds	Structure	Beneficial Effects	Deleterious Effects	Clinical Trials
Sobetirome (GC-1)	но соон	 (1) 10-fold lower affinity of TRα (2) Reducing cholesterol level (3) Inhibiting HCC development (4) Liver regeneration 	Fasting blood sugar and insulin resistance	Ending in phase I
GC-24	С но соон	(1) 40-fold higher affinity of TRβ (2) Lower insulin sensitivity	 Low sensitivity for activated-TRβ No hepatic targeting 	
KB-141	но сі соон	(1) Metabolic enhancement(2) Weight loss		
Eprotirome (KB2115)	HO Br HOCOOH	 (1) Reducing triglycerides level markedly (2) Liver targeting (3) Liver regeneration 	(1) Increasing fastingblood insulin(2) Adverse effectson dogs' cartilageof withdrawal	Ending in phase III
M07811 (VK2809) /MB07344	$\begin{array}{c} \downarrow \\ HO \\ $	 (1) Reducing cholesterol and triglycerides level (2) Inhibiting hepatic steatosis (3) Promoting hepatocyte proliferation 		Phase II ongoing
Resmetirom (MGL-3196)		 (1) Reducing cholesterol and triglycerides level (2) Inhibiting hepatic steatosis and fibrosis (3) Reducing hepatic fat markedly (4) Heart protection 		Phase III ongoing

Thyroid hormone receptor agonist Cardiac arrhythmias and increased mortality

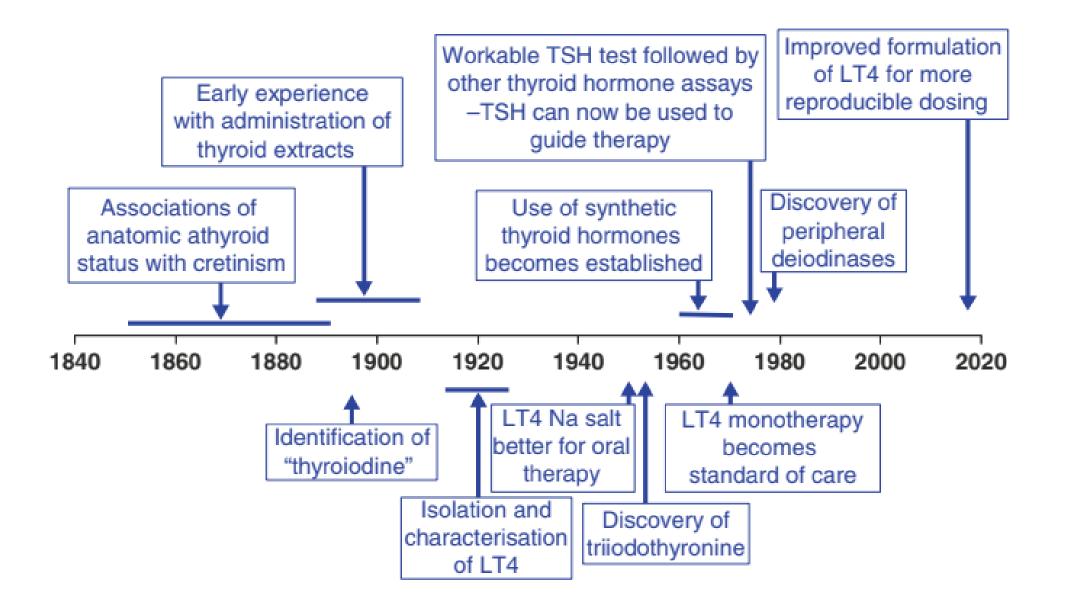
Osteoporosis and Fractures

Table 1 | Completed and ongoing clinical trials of thyromimetics in MASLD and MASH

Compound	Indication	Primary outcome	Timeline	Adverse effects
VK2809 (VOYAGE, phase IIb) NCT04173065 (ref. 160)	Biopsy-confirmed MASH (n=229)	12-week reduction in liver fat content	Completed; 52-week biopsy data awaited	NA
Resmetirom (MGL3196) (MAESTRO-NAFLD-1 phase III)	MASLD (LSM >5.5kPa and CAP >280dB) (n=972)	Week 52 TEAEs (not significant)	Published ¹⁴¹ ; open-label extension (NAFLD-OLE)	Main TEAEs diarrhoea, nausea; TSH= and FT3=, FT4↓ (100 and 80 mg resmetirom per day)
Resmetirom (MGL3196) (MAESTRO-NASH phase III)	MASH (fibrosis stage F1B–F2–F3) (<i>n</i> =966)	Week 52 MASH resolution (P<0.001) fibrosis improvement (P<0.001)	Published ¹³¹ ; 54-month ongoing clinical outcomes study	No increased heart rate, no changes in BMD TSH= (100 mg resmetirom per day) ↓ (80 mg resmetirom per day) FT3=, FT4↓ (100 and 80 mg resmetirom per day)
Resmetirom (MGL3196) (MAESTRO-NASH OUTCOMES phase III) NCT05500222 (ref. 161)	MASH cirrhosis (well compensated) (<i>n</i> =700)	Progression to decompensated cirrhosis	Ongoing	NA
TERN-501 (DUET phase IIa+FXR agonist) NCT05415722 (ref. 162)	Presumed MASH (biopsy and/or imaging) (n=162)	12 weeks Reduction in liver fat content	Completed	NA
HSK31679 (phase II) NCT06168383 (ref. 163)	Biopsy-proven MASH (F2–F3) (n=180)	52 weeks MASH resolution	Ongoing	NA
ALG-055009 (HERALD phase IIa) NCT06342947 (ref. 164)	MASH non-cirrhotic (n=100)	12 weeks Reduction in liver fat content	Ongoing	NA

BMD, bone mineral density; CAP, controlled attenuation parameter (with FibroScan); FT3, free triiodothyronine; FT4, free thyroxine; FXR, farnesoid X receptor; LSM, liver stiffness measurement (with FibroScan); MASH, metabolic dysfunction-associated steatohepatitis; MASLD, metabolic dysfunction-associated liver disease; NA, not applicable; NAFLD, non-alcoholic steatohepatitis; TEAE, treatment-emergent adverse events; TSH, thyroid-stimulating hormone.

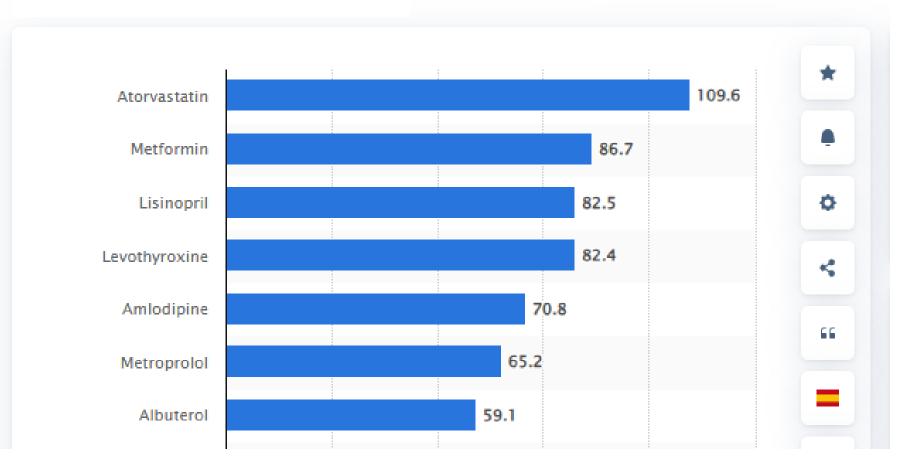
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol. 2024.


The NEW ENGLAND JOURNAL of MEDICINE									
ESTABLISHED IN 1812	ESTABLISHED IN 1812 FEBRUARY 8, 2024 VOL. 390 NO. 6								
A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis Fibrosis Stages									
F0 F1 F2 F3 F4	Placebo (N=321)	Resmetirom 80 mg (N=322)	Resmetirom 100 mg (N=323)						
Fibrosis stages range from F0 (no fibrosis) to F4 (cirrhosis)									

NA	201		ion with No Worsening of Fibrosis					
			is Improvement by ≥1 Stage with No Worser ELD Activity Score	ning				
nts		10	C Percent Change in LDL Cholesterol Lev	vel at Week 24				
of Patients		1	5 ¬ Table 4. Safety Summary (Primary Population).					
centage of	atients	1	Event	1	Resmetirom, 80 mg	Resmetirom, 100 mg	Placebo	
cent	CON	CL	USIONS					

Both the 80-mg dose and the 100-mg dose of resmetirom were superior to placebo with respect to NASH resolution and improvement in liver fibrosis by at least one stage. (Funded by Madrigal Pharmaceuticals; MAESTRO-NASH ClinicalTrials.gov number, NCT03900429.)

_	(N=321) 80 mg 100 mg (N=322) (N=323)			I
	≥1 Serious adverse event attributed to resmetirom or placebo*	2 (0.6)	0	1 (0.3)
	≥1 Serious adverse event	35 (10.9)	41 (12.7)	37 (11.5)
	≥1 Adverse event attributed to resmetirom or placebo [*]	124 (38.5)	134 (41.5)	88 (27.4)


Α

Economic Impacts

Health, Pharma & Medtech > Pharmaceutical Products & Market

Leading 20 U.S. pharma products by total prescriptions in 2022 (in millions)

Levothyroxine overuse: time for an about face?

Lancet Diabetes Endocrinol 2016

Published Online October 28, 2016 http://dx.doi.org/10.1016/ S2213-8587(16)30276-5

In the UK, about 25% of the adult population are estimated to have their thyroid function measured every year. Additionally, people in the UK with TSH <10 mlU/L were prescribed levothyroxine 1.3 times more in 2009 than in 2001,

31% of treated patients in this cohort had a TSH <10 mlU/L or less, normal T4 and no symptoms of hypothyroidism or abnormal CV risk factors

Levothyroxine overuse: time for an about face?

LT4 3-month cost to patients in the USA from \$4 to \$100 Lancet Diabetes Endocrinol 2016

Published Online October 28, 2016 http://dx.doi.org/10.1016/ S2213-8587(16)30276-5

Synthroid, with 21.5 million annual prescriptions, is the leading prescribed brand-name medication in the USA, with revenues greater than **US\$1 billion** annually

Levothyroxine overuse: time for an about face?

In the UK, the annual amount of thyroid replacement therapy has tripled from 1998 to 2007 and the cost per day increased from less then **<u>£5000 to more than £40 000</u>**.

Lancet Diabetes Endocrinol 2016

Published Online October 28, 2016 http://dx.doi.org/10.1016/ S2213-8587(16)30276-5

In assessments of the economic effects of current practice, the costs to patients and other payers of thyroid testing, clinical follow-up of abnormal test results, clinical visits, and possible lifelong monitoring, follow-up, and levothyroxine use must be taken into account.

Cost-of-Illness Trends Associated with Thyroid Disease in Korea

Results: The cost-of-illness of thyroid disease in Korea was estimated at 224.2 billion won in 2002, 303.4 billion won in 2004, 400.3 billion won in 2006, 570.4 billion won in 2008, and 762.2 billion won in 2010. For example, the cost-of-illness of thyroid disease in 2010 was 3.4 times greater compared to 2002. The direct cost of the total cost-of-illness was 69.7%, which accounted for the highest proportion of costs. Cost-of-illness for individuals between the ages of 30 and 50 accounted for the greatest share of costs.

Conclusion: The cost-of-illness of thyroid disease was relatively large in economically active age groups, and demonstrated a very rapid growth rate compared to other major diseases in Korea. Therefore, we suggest nationwide recognition of the importance of prevention and management of thyroid disease and prioritization of the management of thyroid disease among current and future health promotion policies in Korea.